

ROYAL HASKONING

Bicycle Traffic Planning and Design

April 1, 2011, Prilep, Macedonia Wim van der Wijk

Bicycle Traffic Planning and Design

Content:

- Policy
- Basic principles
- Network
- Routes
- Sections
- •Junctions / crossings
- Bicycle parking
- Additional subjects

Why design and realize facilities for bicycles?

Benefits of cycling

Mr. Roelof Wittink, Director I-CE, Interface for Cycling Expertise

Benefits: the local economy

- Shops better accessible when people come by bike
- Drivers spend 2 times more, cyclists come 3 times more often
- Houten shopping centre has 2,5 timer higher turn over

Benefits: road safety

- Considering cyclists and pedestrians main factor for road safety
- 32% more km by car and on the bike, 1980-2001; 48% less fatalities in cars and 54% less fatal cyclists

Benefits: attractive cities

- You remember cities from urban space, monuments, not from cars
- Cars need 20-30 times more space than bicycles

Combi public transport and cycling is car alternative

- Public transport competes on longer trips, bike on short trips and is door-to-door;
- Bicycle is excellent feeder: 40% train passengers come by bike, 15% leave by bike

Costs and benefits

- Costs roads for car 10 times higher, for parking 15 times higher
- Cost benefit ratio: 1:5-15

Conclusion:

 Less congestion, more safety, better fitness, better air quality, zero emission, less stress, affordable, more independence, it's a pleasure

- Potential is high: 50% all trips within cycling distance
- Investments are needed
- Listen to what people have to say
- Plan and design for a *coherent* network of *safe*, *attractive*, *comfortable* and *direct* routes: 5 quality requirements, everywhere applicable

Social indifferent

Cycling has always been done by all people, no matter income and lifestyle, including royal family

Stimulate use of bicycles (7,5 km)

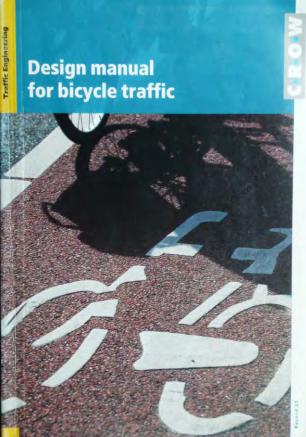
Bicycle route networks → Meet quality requirements

Appropriate parking facilities \rightarrow Location & quality

New developments well connected

Reduction of bicycle their

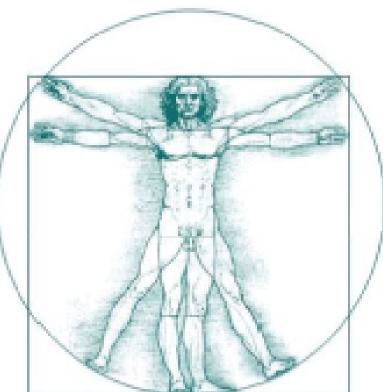
Be alert for new barriers


Human being as measure of things \rightarrow \rightarrow design from cyclists' point of view

Characteristics

Integral design

Function, form and use


5 main requirements

Human being as measure of things \rightarrow \rightarrow design from cyclists' point of view

Differences:

- age
- gender
- physical capacities
- reason for cycling

Human being as measure of things \rightarrow \rightarrow design from cyclists' point of view

Design speed: commuter cyclist

Crossing time, gradient: elderly

Eye level, red light discipline: youth

Characteristics:

Muscle power minimum energy loss
 Unstable wind, bumps, low speed
 No crumple zone vulnerable, space
 Hardly suspension smooth surface
 Open air shelter, attractive surroundings
 Social activity side by side, escort
 Key factor: people physical limitations

Characteristics:

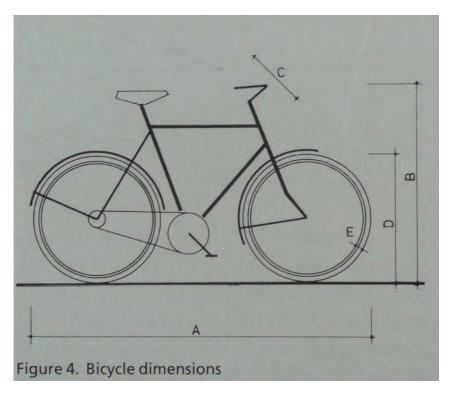
Different types of bicycles

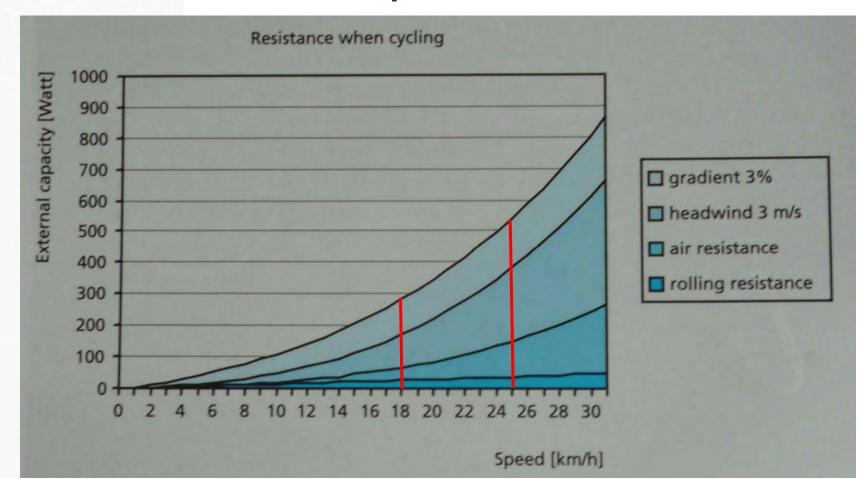
Characteristics:

Different bicycles Different cyclists

Characteristics:

Different bicycles Different cyclists Different use of bicycle

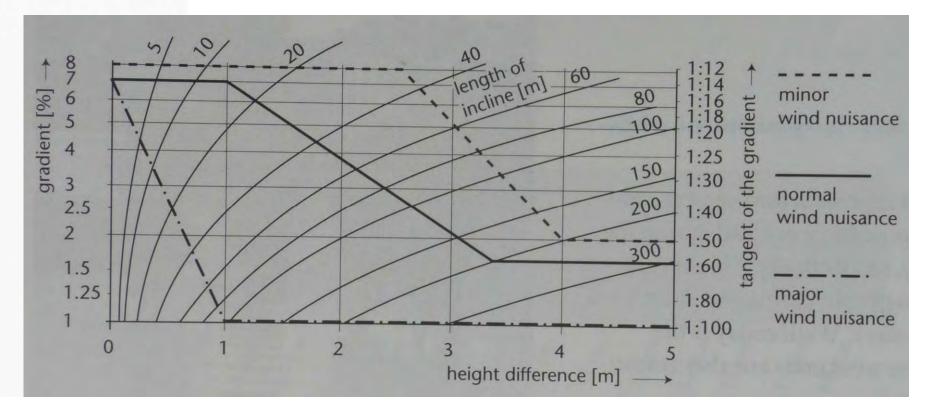




Characteristics: main dimensions

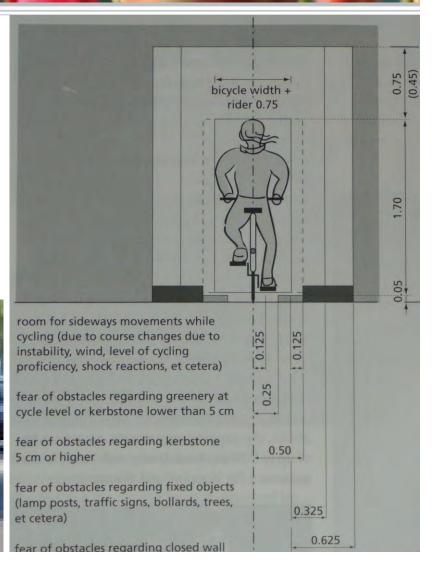
Length: 150 – 220 cm Height: 40 – 120 cm Handle bar width: 45 – 70 cm Wheel size: 51 – 72 cm Tyre thickness: 2.5 – 5.0 cm

Characteristics: muscle power \rightarrow resistance


Characteristics: muscle power \rightarrow resistance

Characteristics: muscle power

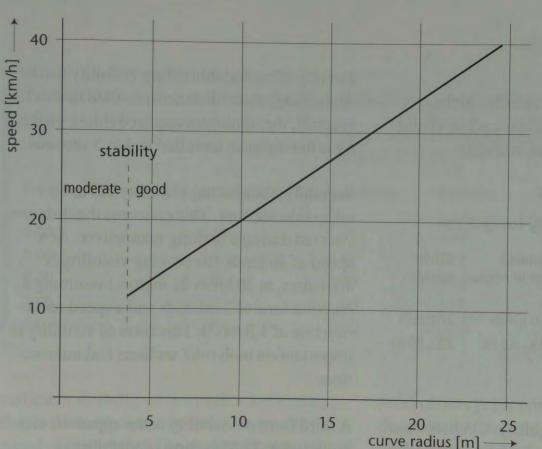
gradient


Characteristics: muscle power

gradient

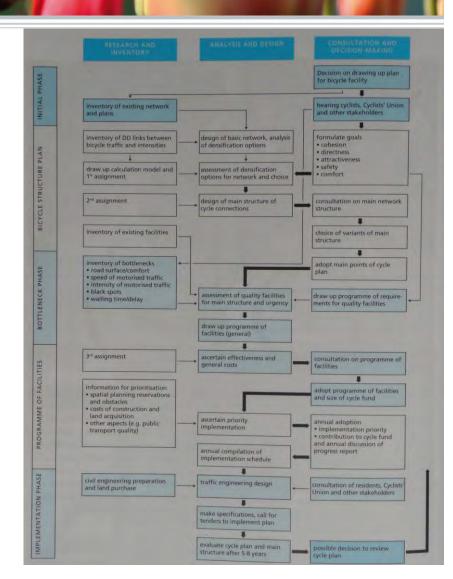
Characteristics: balance

zigzagging, free space



Characteristics: stability

curves and speed


Characteristics: stability

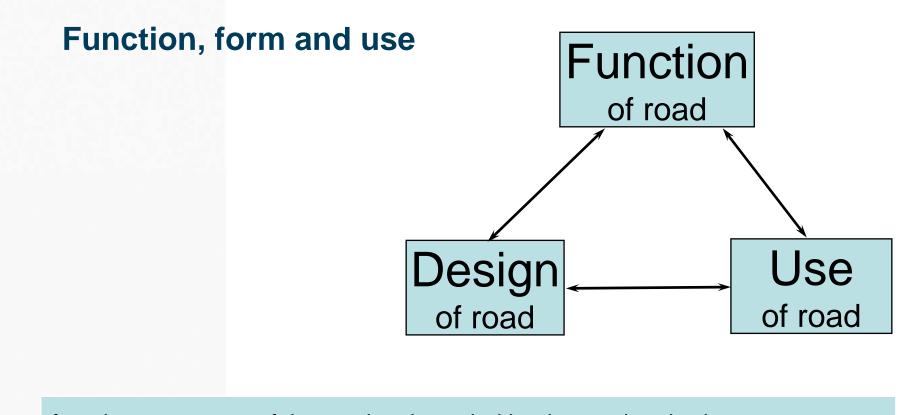

visibility

Table 7. Approach visibility required for various road widths and riding speeds					
		approach visibility required (m) for various closing speeds of motorised traffic (V ₈₅)			
crossing distance (m)	crossing time (s)	30 km/h	50 km/h	70 km/h	80 km/h
4.00	4.2	45	100	180	205
5.00	4.5	45	105	185	210
6.00	4.9	50	110	190	220
7.00	5.1	50	115	200	225
8.00	5.5	55	120	205	235

Integral design

- Research and inventory
- Analysis and design
- Consultation and decisions
- Initial phase
- Bicycle structure plan
- Bottle neck phase
- Programme of facilities
- Implementation phase

function: design: use: use of the road as intended by the road authority the physical design and layout properties of the infrastructure actual use of the infrastructure and behaviour of the road user

Safety

Cohesion

5 main requirements

Directness

Attractiveness

Cohesive whole (network / route)

From origin to destination

Cohesion

- availability
- ease
- quality
- freedom

As direct as possible (route)

From origin to destination Minimum travel time

Directness

- traffic flow speed
- delays (number and length)
- detours (distance)

Cycling has to be pleasant (journey)

Varies per person; Psychological: perception

Attractiveness

e.g.:

- quiet
- smooth
- safe
- beauty (nature / buildings)

Also: social safety

Vulnerability (mass / speed / no technical provisions)

Save conditions: Separation in time or space

Safety

- big residential areas
- avoid dangerous routes
- short journeys
- shortest = safest
- ease
- avoid conflicts
- reduce speed

Comfort

Minimum nuisance and delay (journey)

Avoid additional physical effort

- smoothness of pavement
- hilliness
- chance of stopping
- weather
- traffic

Network

Essential basis for bicycle friendly climate

- Provides opportunity to use bicycle for various purposes
- Distinguishes functions of routes
- Allows design related to function

Network based on expected use:

- Define main origins and destinations
- Link origins and destinations
- (Multi modal) traffic modelling

Providing physical link between origin and destination

Level of quality related to function and (expected) use

Design choices and decisions

Function, form and use:

Bicycle volume Motor vehicle speed Motor vehicle volume

Design requirements:

Cohesion not applicable

Distance: minimum bending and winding

Time: minimal delay (forced speed reduction): < 15%

Directness

design speed:

- high speed routes: 30 km/h
- main routes: 25 km/h
- other routes: 20 km/h

Social safety:

visibility (surroundings) public lighting maintenance

Attractiveness

Traffic nuisance:

separation with busy traffic (motor vehicles) related to surroundings

Risk of accidents: minimize number of meetings between bicycles and motor vehicles

separation if major speed differences

Safety

speed reduction if major differences in mass and / or direction

sufficient visibility (day and night)

Flow:

minimize probability of speed reduction (width of surface, wide curves, car parking)

Comfort

Smoothness: smooth surface, preferably asphalt or concrete

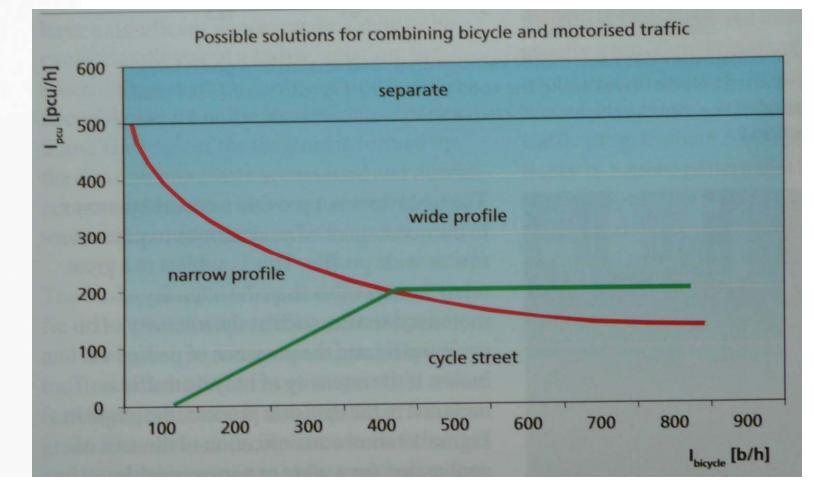
Gradient

Weather nuisance

Separation

Table 14. Option diagram for road sections inside the built-up area

Cycle network category


OVAL MASKON

Road category	Max. sp of mote traffic	orised	Motorised traffic inten- sity (pcu/day)	basic network (I _{bicycle} > work 750/day)	cycle route (I _{bicycle} 500- 2500/day)	main cycle route (I _{bicycle} > 2000/day)
	n/a		0	solitary track		
Estate acces roead	walking pace or 30 km/h		1 - 2.500 2.000 - 5.000 > 4.000	combined traffic cycle lane or cycle track		cycle street or cycle lane (with right of way)
District acces road	50 km/h	2x1 lanes 2x2 lanes	irrelevant	cycle track or parallel road		
Distri	70 km/h			cycle track,moped/cycle track or parallel road		ological

Separation / combined use

Combined use, dimensions

Dimensional segment	Required width profile (m)
cyclist ²⁾	0.75
car ²⁾	1.75
lorry ²⁺³⁾	2.60
cyclist/edge (kerb) ¹⁾	0.25
cyclist/parked vehicle ¹⁺⁴⁾	0.50
cyclist/cyclist (both riding)	0.50
cyclist/driving vehicle ¹⁺⁴⁾	0.85
vehicle/vehicle (both driving) ²⁺⁴⁾	0.30
driving vehicle/kerb ²⁺⁴⁾	0.25

VAL MASKO

1) value determined on the basis of research

2) source: Recommendations for Traffic Provisions in Built-up Areas (ASVV)

3) in this context, buses are counted as lorries

4) a vehicle refers to: all motor vehicles with at least three wheels

Combined use, Bicycle and pedestrian traffic

Table 20. Possibilities for combining bicycle and pedestrian traffic

Number of pedestrians per hour per metre of profile width ¹⁾	Recommended solution [33]			
< 100	Full combination			
100 - 160	Separation; traffic path with continuous profile (no differences in height)			
160 - 200	Separation; traffic path with sectional profile			
> 200	No combination possible			

1) the number of pedestrians that pass an imaginary line straight across a street in an hour, divided by the total profile width in metres

Examples: Combined

Examples: Bicycle lanes

Examples: Bicycle street

Examples: Separate bicycle path

Examples: Short cut

Design choices and decisions

Function, form and use:

Comprehensible Minimum number of conflict points Low traffic speed

Design requirements:

Cohesion not applicable

Directness

Distance: illogical movements or diversions avoided

Time: minimal delay (forced speed reduction)

> right of way refuge islands traffic lights bridge or tunnel

Social safety:

visibility (surroundings) public lighting maintenance

Attractiveness

Safety

Risk of conflicts: minimize number of meetings between bicycles and motor vehicles

separation if major differences in speed and / or mass

speed reduction at level crossings

bundled conflicts

sufficient visibility (day and night) visibility cyclists by car drivers

Flow: minimize probability of waiting

minimize delay due to sharp curves, stationary traffic

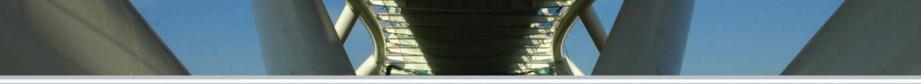
Comfort

Smoothness: smooth surface, smooth transition

Traffic nuisance: pollution, noise, bad smell

Weather nuisance

Type of junction


Table 24. Option table: district access road – estate access road intersection solutions

			Section 2: estate	e access road o	or solitary path	
	t t		l _{pcu} < 500 pcu/h			l _{pcu} > 450 pcu/h
Section 1: district access road, with or without (main) cycle route	hourly intensity	no cycle route	cycle route	main cycle route	all situations	
	1-1,000 pcu/h	right of way intersection		right of way intersection + supplementary measures or roundabout	roundabout	
	s road, w cle route	800 - 1,500 pcu/h	right of way intersection + supplementary measures			
district acces (main) cy	1,200 - 1,750 pcu/h	right of way intersection + supplementary measures, roundabout, intersection with TCS or grade-separated intersection (only for main cycle route where appropriate)			-	
	Section 1: c	> 1,500 pcu/h	intersection with TCS or grade-separated (only for main cycle route where appropriate)			roundabout, intersection with TCS or grade- separated solution

Type of junction Table 25. Option table: district access road – district access road intersection solutions

Section 2: district access road, with or without cycle route $(I_2 \le I_1)$

Section 1: district access road, with or without (main) cycle route		l ₂ < 1,200 pcu/day			l ₂ > 1,000 pcu/day
	hourly intensity (I ₁) pcu/h	no cycle route	cycle route	main cycle route	all situations
	500 - 1,500		single lane roundabout		roundabout (if necessary with bypass or two-lane) or TCS
	1.200 - 1,750		roundabout (if necessary with bypass or two- lane) or TCS		(multi-lane) roundabout with cycle tunnel in busiest lateral direction (or TCS)
	> 1,500		(multi-lane) roundabout or TCS	(multi-lane) roundabout with cycle tunnel in busiest lateral direction (or TCS)	TCS or grade-separated

Examples: Crossing

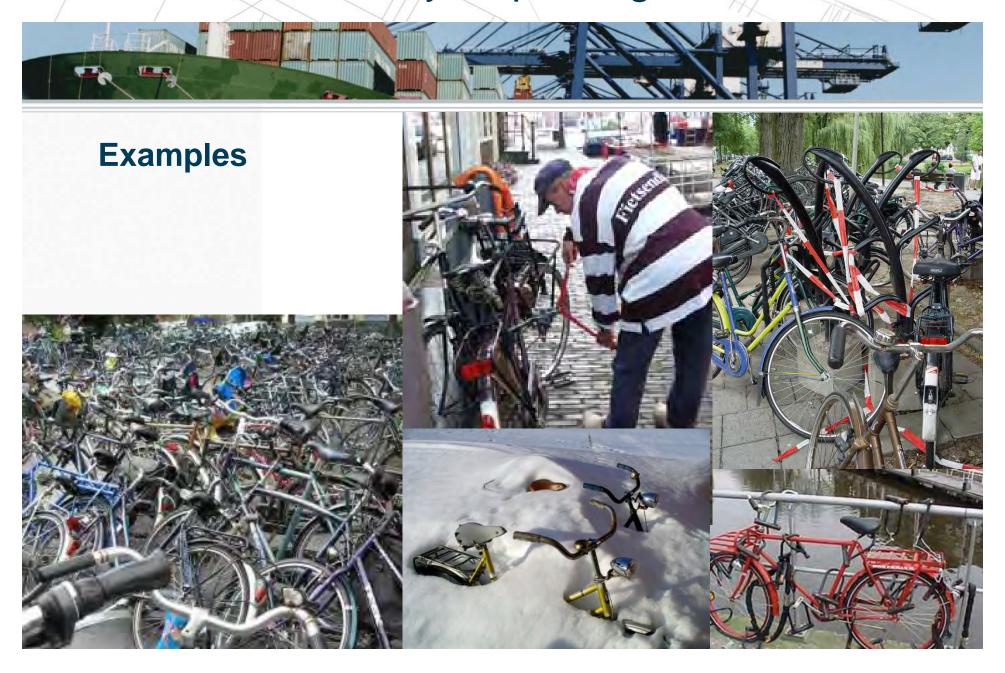
Examples: Right of way

Examples: Roundabout

Examples: Roundabout

Examples: Traffic lights

Examples: Bridge / tunnel


Essential for stimulating use of bicycle

Cyclists' point of view:

- Theft prevention
- Damage prevention
- Clean and dry storage

Road authority point of view:

- Preventing blockage / nuisance for pedestrians
- Appearance public area

Origin: Individual dwelling

- Lockable storeroom
- Neighbourhood storage
- Balcony

Destination:

- Private storage / parking
- Public parking
 - Free or paid
 - Supervised or unattended

Examples origin:

- Balcony
- Lockable storeroom
- Neighbourhood storage

Examples destination:

Private storage / parking Public parking

Examples:

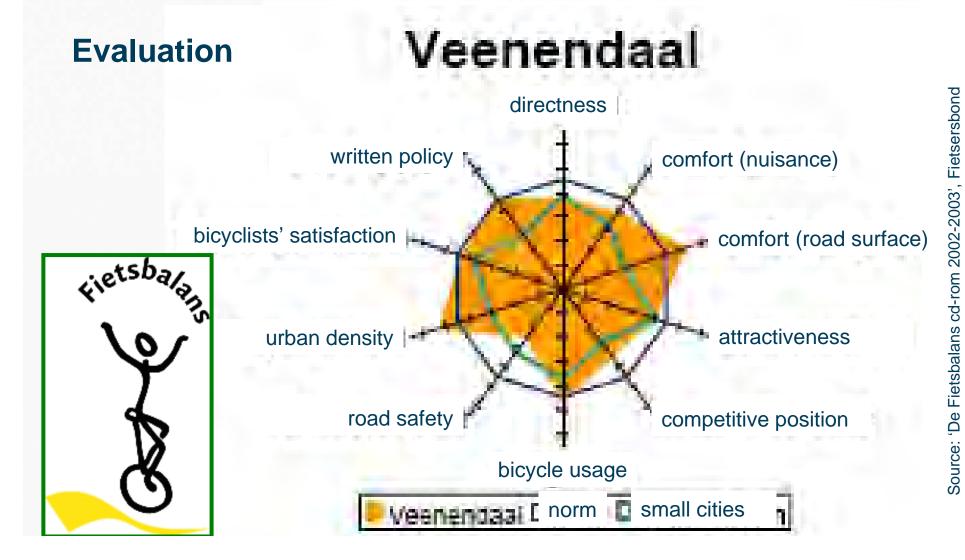
Public parking
Free or paid

Additional subjects

Additional facilities:

- Signage
- Resting points
- Shelter
- Service
- Bicycle rental

Additional subjects


Stimulating bicycle usage by:

- Promotion
- Dissemination
- Brochure
- Article
- Event
- Logo

Additional subjects

Bicycle Traffic Design

How to design:

- Bicycle path / lanes?
- Junction / crossing?
- Bicycle parking ?

Always think of:

Function

(main route / secondary / school / recreational)

- Also for other road users (cars / pedestrian)
- Volumes

Bicycle Traffic Design

Thank you for your attention

Thanks to: Mr. Roelof Wittink, I-CE www.cycling.nl